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Abstract— Java is a very promising language, which makes use of JVM for platform independency. Java compiler converts program 

into byte code which is further executed. There is scope for the optimization in the byte code produced by the compiler. For the static 

optimization in java one can work on the byte code or different intermediate code of java.  The intermediate code of java has 

immeasurable unwrapped code and sophisticated statement that directly result to reliability of any computer code. Java code has solely 

abstraction of this code that hides immeasurable quality kind user. The 3 address code that is one in every of the intermediate kind in 

compiler method is extremely on the subject of the assembly level code, therefore analysis on this level turn out additional correct result 

and generate nice impact on computer code. There square measure different styles of analysis potential on TAC (three address code). 

Jimple is one in every of the TAC code. Various tools have been for the conversion and SOOT is one of the most popular java code 

optimization analysis tool. 

 These intermediates code are also useful in the various are of Computer Science like Network Security, Software Engineering 

etc. Software engineering is associate degree engineering branch related to development of wares exploitation well-defined scientific 

principles, strategies and procedures. The end result of software system engineering is associate degree economical and reliable wares.  

 Formulas have been proposed to find the reliability of software. Reliability itself depends on the understandability of software 

system. Understandability depends on the some software metrics like number of lines, number of comments etc. Finding the accurate 

reliability is more difficult.  In the project we have given experimental results of the analysis of the software metrics between java and 

jimple. We have found that variation in jimple file depends on the java code that we write. In our work we are comparing the deviation 

of different software metrics on java and jimple file.  We have found that some of the metrics differ in a linear way where as some the 

metrics depends on the logic. 

 

IndexTerms— Soot-Byte code optimization framework, Software Engineering, Usability, Reliability 
________________________________________________________________________________________________________ 

I. INTRODUCTION  

To achieve platform independency in Java language code is converted into byte code and then it is converted in the native 

machine code. Since Java is an Open Source thus it opens the way to optimize the intermediate code for the better performance. 

SOOT is a framework which provides various intermediate code representations for performing optimization analysis.  

 
Intermediate Representations 

The Soot framework [1] provides four intermediate representations code for: 

 Baf  

 Jimple 

 Shimple 

 Grimp  

The representations provide different levels of abstraction on the represented code and are targeted at different uses e.g., baf is a 

byte code representation resembling the Java bytecode and Jimple is a stack less, typed 3-address code suitable for most analyses. 

In this section we will give a detailed description of the Jimple representation and a short description of the other representations.   
 

In software engineering software measures may be understood as a method of quantifying and figuration numerous attributes 

and aspects of software package. Software package Metrics offer measures for numerous aspects of software package method and 

merchandise. Software package measures area unit elementary necessities of software package engineering. They not solely 

facilitate to regulate the software package development method however additionally aid to stay the standard of final product 

wonderful. 

Various software metrics are used to find the various factors to calculate the reliability, reusability, maintainability etc. This is 

shown in the figure 1.  

 
In figure 1, we can see that there are various factors on which reliability of software depends on various factor. One of the factor for 

the reliability is understandability and understandability depends on the following software metrics: 

 Line of codes 

 Number of comments 

 Number of methods 

 Number of classes. 



October 2015, Volume 2, Issue 10                         JETIR (ISSN-2349-5162) 

 

JETIR1510017 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org  87 

 

In the project we are going to do a comparative study of java and jimple file for the above 4 software metrics. 

 

Figure1 Figure Reusability Attribute Model 

 

Work has been done to perform software metrics analysis on java file. If these operations are performed on the intermediate code 

then we can get more accurate results because intermediate codes are closer to the executable code. 

 

 

II. PROBLEM  IDENTIFICATIO 

There are many approaches have been provided to find the reusability of software but it is very hard to find the accurate 

reliability based on the reusability [17]. Java code is not directly run on the machine first it is changed to some intermediate code 

and it is then changed to native machine code. We have observed that java compiler when converts java code to byte code then it 

performs several optimization operations on java code, due to this number of methods calling is increased, number of lines are 

increased and many more changes occurs in intermediate code than the actual java source code. 

In the area of Software Engineering reusability is difficult to find the reusability of software and whatever experiment have been 

done those are based on Java code. So here in our experiment we are performing operations to finding understandability, which is a 

factor to find reusability, on Jimple file and comparing with result of java file.  

III. METHODOLOGY 

To perform the comparative study we have done the following steps: 

1. Used SOOT framework API to generate Jimple file of java. 

2. Selected 11 java programs to perform our analysis 

3. Developed a java program to count software metrics in java as well as Jimple file. 

4. Calculated software metrics using our developed code. 

IV. RESULT AND DISCUSSION 

Beforeyoubegintoformatyourpaper,firstwriteandsavethecontentasaseparatetextfile.Keepyourtextandgraphicfilesseparateuntilafte

rthetexthasbeenformattedandstyled.Donotusehardtabs,andlimituseofhardreturnstoonlyonereturnattheendofaparagraph.Donotaddany

kindofpaginationanywhereinthepaper.Donotnumbertextheads—thetemplatewilldothatforyou. 

 

Result of total number of lines, comments and methods in Java and Jimple file Difference in the number of lines and 

number of methods in Jimple and java file is our motivation to work in this area. Calculation of various metrics in java and Jimple 

file is given in table below: 
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List of program and result of different metrics 

S 

No 

Program Name No of 

lines In 

Java File 

No of 

Lines in 

Jimple file 

1 HelloWorld 14 23 

2 SwapCalulation 31 65 

3 ArraySort 49 141 

4 GenericMethod 61 117 

5 Factorial 67 108 

6 StringPermutaion 68 151 

7 MatrixExample 71 224 

8 CreateThreadRunnable 74 146 

9 Dog 75 116 

10 MainClass 84 230 

11 StackExample 162 266 

 
Above is the result of our experiment in which different java files and jimple files are given to the program written in step2 for 

finding different software metrics. 

V. CONCLUSION AND FUTURE WORK 

Comparing different java and Jimple file gives variations for different software metrics as shown table. Two java file which has 

small difference in number of line but respective Jimple file has big difference.  From result table we can observe that in program 

number 9 and 10, number of lines in java file is 75 and 84 respectively whereas number of lines in corresponding Jimple file is 115 

and 230 in respectively. Various factors affect the variation in number of lines in the creation in Jimple file like the calculation in 

the program; number of method calling, reusability of the components etc. Calculations of the statements in java file increases 

number of lines, because one expression is broken down in many intermediate statements. We have also found that comments in 

the Jimple file is completely removed and number of methods in java file and Jimple file is in a proportion. 

 In our work we have seen that understandability of any program depends on the reusability, reusability depends on the 

percentage of comments and size of the program, and If we go in more depth, Size of a program depends on line of code, number of 

methods, number of classes.  We have performed comparison between java file as well as Jimple file. Jimple file is 3 address code, 

an intermediate code of Java language, generated by SOOT. Thus if we perform analysis of understandability to find reliability on 

Jimple file instead of simple java file, we get more accurate result. 
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